کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
393012 | 665549 | 2013 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the relationship between Gaussian noise and the loss function of the support vector regression machine (SVRM) is analyzed, and then a Gaussian loss function proposed to reduce the effect of such noise on the regression estimates. Since the ε-insensitive loss function cannot reduce noise, a novel support vector regression machine, g-SVRM, is proposed, then a chaotic particle swarm optimization (CPSO) algorithm developed to estimate its unknown parameters. Finally, a hybrid-forecasting model combining g-SVRM with the CPSO is proposed to forecast a multi-dimensional time series. The results of two experiments demonstrate the feasibility of this approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 238, 20 July 2013, Pages 96–110
Journal: Information Sciences - Volume 238, 20 July 2013, Pages 96–110
نویسندگان
Qi Wu, Rob Law, Edmond Wu, Jinxing Lin,