کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393342 665636 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generation of a probabilistic fuzzy rule base by learning from examples
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Generation of a probabilistic fuzzy rule base by learning from examples
چکیده انگلیسی

This study considers probabilistic fuzzy systems constructed using Mamdani probabilistic fuzzy rules. As a generalisation of deterministic fuzzy systems, Mamdani probabilistic fuzzy systems better model practical complex systems involving uncertainty because they combine the interpretability of fuzzy systems with the statistical properties of probabilistic systems. Using probabilistic fuzzy rules, both probabilistic uncertainty and linguistic ambiguity are handled simultaneously with a single framework. Considering that the information available often consists of a training set of input–output data pairs, a general method for generating Mamdani probabilistic fuzzy rule bases from numerical data pairs is presented. A fuzzy reasoning method is used on the generated probabilistic fuzzy rule base to derive a map leading from the input space to the output space, and a probabilistic fuzzy system is constructed. We use this probabilistic fuzzy modelling method for nonlinear regression analysis. The effectiveness of the proposed method is demonstrated by a comparison with similar regression techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 217, 25 December 2012, Pages 21–30
نویسندگان
, , , ,