کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393496 665654 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weighted operators based on dissimilarity function
ترجمه فارسی عنوان
اپراتورهای وزن بر اساس عملکرد متمایز
کلمات کلیدی
اپراتور گرداننده، تابع متضاد، کمینه سازی، یکنواختی، یکنواختی ضعیف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper talks about weighted operators based on dissimilarity function and discusses the monotone non-decreasingness of these operators, i.e., it looks for conditions leading to aggregation operators. Moreover, the paper discusses the shift-invariance and weak monotone non-decreasingness of mentioned operators. It discusses minimization based operators Aw,D,Ag,D, where ww is a weighting vector, gg is a vector of weighting functions, and D   is a dissimilarity function D(x,y)=(f(x)-f(y))2D(x,y)=(f(x)-f(y))2. Following Aw,DAw,D we recognize the class of arithmetic means, ordered weighted averaging OWA   operators and their extensions. Operators Aw,DAw,D are monotone non-decreasing, and hence shift-invariant and weak monotone non-decreasing, too. By the operators Ag,DAg,D we introduce a generalization of the operators Aw,DAw,D. The operators Ag,DAg,D cover the class of mixture operators, quasi-mixture operators, and their extensions. In general, these operators need not be non-decreasing, nor shift-invariant, and hence nor weak monotone non-decreasing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 281, 10 October 2014, Pages 172–181
نویسندگان
,