کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393901 665710 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses
چکیده انگلیسی

This paper proposes a hybrid evolutionary algorithm for multiobjective optimisation of trusses using real-code population-based incremental learning (RPBIL) to solve multiobjective design problems. Differential evolution (DE) operators are integrated into the main procedure of RPBIL leading to a hybrid algorithm. The newly developed optimiser, along with some established multiobjective evolutionary algorithms (MOEAs) is implemented to solve a number of multiobjective design problems of trusses. Comparative performance based upon a hypervolume indicator shows that the new hybrid multiobjective evolutionary algorithm is superior to the other MOEAs particularly in cases involving large-scale truss design problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 223, 20 February 2013, Pages 136–152
نویسندگان
, ,