کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
394149 665779 2013 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of block parameter perturbations in Gaussian Bayesian networks: Sensitivity and robustness
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
The effect of block parameter perturbations in Gaussian Bayesian networks: Sensitivity and robustness
چکیده انگلیسی

In this work we study the effects of model inaccuracies on the description of a Gaussian Bayesian network with a set of variables of interest and a set of evidential variables. Using the Kullback–Leibler divergence measure, we compare the output of two different networks after evidence propagation: the original network, and a network with perturbations representing uncertainties in the quantitative parameters. We describe two methods for analyzing the sensitivity and robustness of a Gaussian Bayesian network on this basis.In the sensitivity analysis, different expressions are obtained depending on which set of parameters is considered inaccurate. This fact makes it possible to determine the set of parameters that most strongly disturbs the network output. If all of the divergences are small, we can conclude that the network output is insensitive to the proposed perturbations. The robustness analysis is similar, but considers all potential uncertainties jointly. It thus yields only one divergence, which can be used to confirm the overall sensitivity of the network. Some practical examples of this method are provided, including a complex, real-world problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 222, 10 February 2013, Pages 439–458
نویسندگان
, , ,