کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
394815 | 665845 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence of powers for a fuzzy matrix with convex combination of max-min and max-arithmetic mean operations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Fuzzy matrices have been proposed to represent fuzzy relations on finite universes. Since Thomason's paper in 1977 showing that powers of a max-min fuzzy matrix either converge or oscillate with a finite period, conditions for limiting behavior of powers of a fuzzy matrix have been studied. It turns out that the limiting behavior depends on the algebraic operations employed, which usually in the literature includes max-min/max-product/max-Archimedean t-norm/max t-norm/max-arithmetic mean operations, respectively. In this paper, we consider the powers of a fuzzy matrix with convex combination of max-min and max-arithmetic mean operations. We show that the powers of such a fuzzy matrix are always convergent.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 179, Issue 7, 15 March 2009, Pages 938-944
Journal: Information Sciences - Volume 179, Issue 7, 15 March 2009, Pages 938-944
نویسندگان
Yung-Yih Lur, Yan-Kuen Wu, Sy-Ming Guu,