کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
394815 665845 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of powers for a fuzzy matrix with convex combination of max-min and max-arithmetic mean operations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Convergence of powers for a fuzzy matrix with convex combination of max-min and max-arithmetic mean operations
چکیده انگلیسی
Fuzzy matrices have been proposed to represent fuzzy relations on finite universes. Since Thomason's paper in 1977 showing that powers of a max-min fuzzy matrix either converge or oscillate with a finite period, conditions for limiting behavior of powers of a fuzzy matrix have been studied. It turns out that the limiting behavior depends on the algebraic operations employed, which usually in the literature includes max-min/max-product/max-Archimedean t-norm/max t-norm/max-arithmetic mean operations, respectively. In this paper, we consider the powers of a fuzzy matrix with convex combination of max-min and max-arithmetic mean operations. We show that the powers of such a fuzzy matrix are always convergent.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 179, Issue 7, 15 March 2009, Pages 938-944
نویسندگان
, , ,