کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
394998 665923 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface
چکیده انگلیسی

In order to characterize the non-Gaussian information contained within the EEG signals, a new feature extraction method based on bispectrum is proposed and applied to the classification of right and left motor imagery for developing EEG-based brain–computer interface systems. The experimental results on the Graz BCI data set have shown that based on the proposed features, a LDA classifier, SVM classifier and NN classifier outperform the winner of the BCI 2003 competition on the same data set in terms of either the mutual information, the competition criterion, or misclassification rate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 178, Issue 6, 15 March 2008, Pages 1629–1640
نویسندگان
, , ,