کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
395808 666020 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A modified gradient-based neuro-fuzzy learning algorithm and its convergence
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A modified gradient-based neuro-fuzzy learning algorithm and its convergence
چکیده انگلیسی

Neuro-fuzzy approach is known to provide an adaptive method to generate or tune fuzzy rules for fuzzy systems. In this paper, a modified gradient-based neuro-fuzzy learning algorithm is proposed for zero-order Takagi–Sugeno inference systems. This modified algorithm, compared with conventional gradient-based neuro-fuzzy learning algorithm, reduces the cost of calculating the gradient of the error function and improves the learning efficiency. Some weak and strong convergence results for this algorithm are proved, indicating that the gradient of the error function goes to zero and the fuzzy parameter sequence goes to a fixed value, respectively. A constant learning rate is used. Some conditions for the constant learning rate to guarantee the convergence are specified. Numerical examples are provided to support the theoretical findings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 180, Issue 9, 1 May 2010, Pages 1630–1642
نویسندگان
, , , ,