کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
401771 676156 2014 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of the Descartes method when using approximate arithmetic
ترجمه فارسی عنوان
در مورد پیچیدگی روش دکارت هنگام استفاده از ریاضی تقریبی
کلمات کلیدی
انزوا ریشه، روش دکارت، روش های تقسیم بندی، محاسبات عددی، مرزهای پیچیدگی، ضریب تقریبی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we introduce a variant of the Descartes method to isolate the real roots of a square-free polynomial F(x)=∑i=0nAixi with arbitrary real coefficients. It is assumed that each coefficient of F can be approximated to any specified error bound. Our algorithm uses approximate arithmetic only, nevertheless, it is certified, complete and deterministic. We further provide a bound on the complexity of our method which exclusively depends on the geometry of the roots and not on the complexity of the coefficients of F. For the special case, where F is a polynomial of degree n with integer coefficients of maximal bitsize τ  , our bound on the bit complexity writes as O˜(n3τ2). Compared to the complexity of the classical Descartes method from Collins and Akritas (based on ideas dating back to Vincent), which uses exact rational arithmetic, this constitutes an improvement by a factor of n. The improvement mainly stems from the fact that the maximal precision that is needed for isolating the roots of F is by a factor n lower than the precision needed when using exact arithmetic.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 65, November 2014, Pages 79–110
نویسندگان
,