کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407994 678242 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stochastic neighbor projection on manifold for feature extraction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Stochastic neighbor projection on manifold for feature extraction
چکیده انگلیسی

This paper develops a manifold-oriented stochastic neighbor projection (MSNP) technique for feature extraction. MSNP is designed to find a linear projection for the purpose of capturing the underlying pattern structure of observations that actually lie on a nonlinear manifold. In MSNP, the similarity information of observations is encoded with stochastic neighbor distribution based on geodesic distance metric, then the same distribution is required to be hold in feature space. This learning criterion not only empowers MSNP to extract nonlinear feature through a linear projection, but makes MSNP competitive as well by reason that distribution preservation is more workable and flexible than rigid distance preservation. MSNP is evaluated in three applications: data visualization for faces image, face recognition and palmprint recognition. Experimental results on several benchmark databases suggest that the proposed MSNP provides a unsupervised feature extraction approach with powerful pattern revealing capability for complex manifold data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 17, October 2011, Pages 2780–2789
نویسندگان
, , ,