کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410399 679140 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers
چکیده انگلیسی

Gaussian processes have received significant interest for statistical data analysis as a result of the good predictive performance and attractive analytical properties. When developing a Gaussian process regression model with a large number of covariates, the selection of the most informative variables is desired in terms of improved interpretability and prediction accuracy. This paper proposes a Bayesian method, implemented through the Markov chain Monte Carlo sampling, for variable selection. The methodology presented here is applied to the chemometric calibration of near infrared spectrometers, and enhanced predictive performance and model interpretation are achieved when compared with benchmark regression method of partial least squares.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 13–15, August 2010, Pages 2718–2726
نویسندگان
, ,