کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412966 679708 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving performance of neural classifiers via selective reduction of target levels ⋆
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Improving performance of neural classifiers via selective reduction of target levels ⋆
چکیده انگلیسی

Reducing the level of the targets corresponding to training samples for a machine classifier using the outputs of an auxiliary classifier is interesting because it allows to save expressive power unnecessarily dedicated to increase the output level of well-classified samples. In this paper we propose an iterative form of this selective reduction of target levels with a simple linear reduction schedule. Extensive simulations show that the proposed method has not only a performance better than or equal to conventional training or using static versions of the reduction, but also with respect to support vector machines (SVM). This potential advantage is accompanied by a smaller size and a design effort not much higher than the corresponding SVM, thus making the proposed method very attractive for practical applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 13–15, August 2009, Pages 3020–3027
نویسندگان
, ,