کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
429342 | 687252 | 2006 | 13 صفحه PDF | دانلود رایگان |

Eğecioğlu and Remmel [Linear Multilinear Algebra 26 (1990) 59–84] gave an interpretation for the entries of the inverse Kostka matrix K−1 in terms of special rim-hook tableaux. They were able to use this interpretation to give a combinatorial proof that KK−1=I but were unable to do the same for the equation K−1K=I. We define an algorithmic sign-reversing involution on rooted special rim-hook tableaux which can be used to prove that the last column of this second product is correct. In addition, following a suggestion of Chow [preprint, math.CO/9712230, 1997] we combine our involution with a result of Gasharov [Discrete Math. 157 (1996) 193–197] to give a combinatorial proof of a special case of the (3+1)-free Conjecture of Stanley and Stembridge [J. Combin. Theory Ser. A 62 (1993) 261–279].
Journal: Journal of Algorithms - Volume 59, Issue 2, May 2006, Pages 149-161