کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
429367 687530 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effective learning in the presence of adaptive counterparts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Effective learning in the presence of adaptive counterparts
چکیده انگلیسی

Adaptive learning algorithms (ALAs) is an important class of agents that learn the utilities of their strategies jointly with the maintenance of the beliefs about their counterparts' future actions. In this paper, we propose an approach of learning in the presence of adaptive counterparts. Our Q-learning based algorithm, called Adaptive Dynamics Learner (ADL), assigns Q-values to the fixed-length interaction histories. This makes it capable of exploiting the strategy update dynamics of the adaptive learners. By so doing, ADL usually obtains higher utilities than those of equilibrium solutions. We tested our algorithm on a substantial representative set of the most known and demonstrative matrix games. We observed that ADL is highly effective in the presence of such ALAs as Adaptive Play Q-learning, Infinitesimal Gradient Ascent, Policy Hill-Climbing and Fictitious Play Q-learning. Further, in self-play ADL usually converges to a Pareto efficient average utility.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algorithms - Volume 64, Issue 4, October 2009, Pages 127-138