کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
429369 687530 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neuroevolution strategies for episodic reinforcement learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Neuroevolution strategies for episodic reinforcement learning
چکیده انگلیسی

Because of their convincing performance, there is a growing interest in using evolutionary algorithms for reinforcement learning. We propose learning of neural network policies by the covariance matrix adaptation evolution strategy (CMA-ES), a randomized variable-metric search algorithm for continuous optimization. We argue that this approach, which we refer to as CMA Neuroevolution Strategy (CMA-NeuroES), is ideally suited for reinforcement learning, in particular because it is based on ranking policies (and therefore robust against noise), efficiently detects correlations between parameters, and infers a search direction from scalar reinforcement signals. We evaluate the CMA-NeuroES on five different (Markovian and non-Markovian) variants of the common pole balancing problem. The results are compared to those described in a recent study covering several RL algorithms, and the CMA-NeuroES shows the overall best performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algorithms - Volume 64, Issue 4, October 2009, Pages 152-168