کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
429885 687704 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Agnostic active learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Agnostic active learning
چکیده انگلیسی

We state and analyze the first active learning algorithm that finds an ϵ-optimal hypothesis in any hypothesis class, when the underlying distribution has arbitrary forms of noise. The algorithm, A2 (for Agnostic Active), relies only upon the assumption that it has access to a stream of unlabeled examples drawn i.i.d. from a fixed distribution. We show that A2 achieves an exponential improvement (i.e., requires only samples to find an ϵ-optimal classifier) over the usual sample complexity of supervised learning, for several settings considered before in the realizable case. These include learning threshold classifiers and learning homogeneous linear separators with respect to an input distribution which is uniform over the unit sphere.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computer and System Sciences - Volume 75, Issue 1, January 2009, Pages 78-89