کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
429889 687706 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extremal properties of polynomial threshold functions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Extremal properties of polynomial threshold functions
چکیده انگلیسی

In this paper we give new extremal bounds on polynomial threshold function (PTF) representations of Boolean functions. Our results include the following:
• Almost every Boolean function has PTF degree at most . Together with results of Anthony and Alon, this establishes a conjecture of Wang and Williams [C. Wang, A.C. Williams, The threshold order of a Boolean function, Discrete Appl. Math. 31 (1991) 51–69] and Aspnes, Beigel, Furst, and Rudich [J. Aspnes, R. Beigel, M. Furst, S. Rudich, The expressive power of voting polynomials, Combinatorica 14 (2) (1994) 1–14] up to lower order terms.
• Every Boolean function has PTF density at most . This improves a result of Gotsman [C. Gotsman, On Boolean functions, polynomials and algebraic threshold functions, Technical Report TR-89-18, Department of Computer Science, Hebrew University, 1989].
• Every Boolean function has weak PTF density at most o(1)n2. This gives a negative answer to a question posed by Saks [M. Saks, Slicing the hypercube, in: London Math. Soc. Lecture Note Ser., vol. 187, 1993, pp. 211–257].
• PTF degree ⌊log2m⌋+1 is necessary and sufficient for Boolean functions with sparsity m. This answers a question of Beigel [R. Beigel, personal communication, 2000]. We also give new extremal bounds on polynomials which approximate Boolean functions in the ℓ∞ norm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computer and System Sciences - Volume 74, Issue 3, May 2008, Pages 298-312