کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
430192 687834 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A general dimension for query learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A general dimension for query learning
چکیده انگلیسی

We introduce a combinatorial dimension that characterizes the number of queries needed to exactly (or approximately) learn concept classes in various models. Our general dimension provides tight upper and lower bounds on the query complexity for all sorts of queries, not only for example-based queries as in previous works.As an application we show that for learning DNF formulas, unspecified attribute value membership and equivalence queries are not more powerful than standard membership and equivalence queries. Further, in the approximate learning setting, we use the general dimension to characterize the query complexity in the statistical query as well as the learning by distances model. Moreover, we derive close bounds on the number of statistical queries needed to approximately learn DNF formulas.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computer and System Sciences - Volume 73, Issue 6, September 2007, Pages 924-940