کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
430377 | 687969 | 2011 | 8 صفحه PDF | دانلود رایگان |

A tournament T=(V,A) is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to tournaments is known as the k-Feedback Arc Set in Tournaments (k-FAST) problem. In this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T′ on O(k) vertices. In fact, given any fixed ϵ>0, the kernelized instance has at most (2+ϵ)k vertices. Our result improves the previous known bound of O(k2) on the kernel size for k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for k-FAST.
Journal: Journal of Computer and System Sciences - Volume 77, Issue 6, November 2011, Pages 1071-1078