کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
430455 687984 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On problems without polynomial kernels
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On problems without polynomial kernels
چکیده انگلیسی

Kernelization is a strong and widely-applied technique in parameterized complexity. A kernelization algorithm, or simply a kernel, is a polynomial-time transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parameter bounded by a function of the parameter in the input. A kernel is polynomial if the size and parameter of the output are polynomially-bounded by the parameter of the input.In this paper we develop a framework which allows showing that a wide range of FPT problems do not have polynomial kernels. Our evidence relies on hypothesis made in the classical world (i.e. non-parametric complexity), and revolves around a new type of algorithm for classical decision problems, called a distillation algorithm, which is of independent interest. Using the notion of distillation algorithms, we develop a generic lower-bound engine that allows us to show that a variety of FPT problems, fulfilling certain criteria, cannot have polynomial kernels unless the polynomial hierarchy collapses. These problems include k-Path, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-Branchwidth, and several optimization problems parameterized by treewidth and other structural parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computer and System Sciences - Volume 75, Issue 8, December 2009, Pages 423-434