کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
431043 688259 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spanners of additively weighted point sets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Spanners of additively weighted point sets
چکیده انگلیسی

We study the problem of computing geometric spanners for (additively) weighted point sets. A weighted point set is a set of pairs (p,r)(p,r) where p is a point in the plane and r   is a real number. The distance between two points (pi,ri)(pi,ri) and (pj,rj)(pj,rj) is defined as |pipj|−ri−rj|pipj|−ri−rj. We show that in the case where all riri are positive numbers and |pipj|⩾ri+rj|pipj|⩾ri+rj for all i, j   (in which case the points can be seen as non-intersecting disks in the plane), a variant of the Yao graph is a (1+ϵ)(1+ϵ)-spanner that has a linear number of edges. We also show that the Additively Weighted Delaunay graph (the face-dual of the Additively Weighted Voronoi diagram) has a spanning ratio bounded by a constant. The straight-line embedding of the Additively Weighted Delaunay graph may not be a plane graph. Given the Additively Weighted Delaunay graph, we show how to compute a plane straight-line embedding that also has a spanning ratio bounded by a constant in O(nlogn) time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Discrete Algorithms - Volume 9, Issue 3, September 2011, Pages 287–298
نویسندگان
, , ,