کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
431087 | 688270 | 2010 | 14 صفحه PDF | دانلود رایگان |

In this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs.
Journal: Journal of Discrete Algorithms - Volume 8, Issue 3, September 2010, Pages 282–295