کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
432453 | 688896 | 2012 | 14 صفحه PDF | دانلود رایگان |

This paper reports an application dependent network design for extreme scale high performance computing (HPC) applications. Traditional scalable network designs focus on fast point-to-point transmission of generic data packets. The proposed network focuses on the sustainability of high performance computing applications by statistical multiplexing of semantic data objects. For HPC applications using data-driven parallel processing, a tuple is a semantic object. We report the design and implementation of a tuple switching network for data parallel HPC applications in order to gain performance and reliability at the same time when adding computing and communication resources. We describe a sustainability model and a simple computational experiment to demonstrate extreme scale application’s sustainability with decreasing system mean time between failures (MTBF). Assuming three times slowdown of statistical multiplexing and 35% time loss per checkpoint, a two-tier tuple switching framework would produce sustained performance and energy savings for extreme scale HPC application using more than 1024 processors or less than 6 hour MTBF. Higher processor counts or higher checkpoint overheads accelerate the benefits.
► An application dependent network is proposed for extreme scale network applications.
► A tuple switching network is proposed for extreme scale HPC applications.
► Statistical multiplexing of application data is proposed to address extreme scale systems in general.
Journal: Journal of Parallel and Distributed Computing - Volume 72, Issue 11, November 2012, Pages 1521–1534