کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4324845 | 1613942 | 2013 | 14 صفحه PDF | دانلود رایگان |

Levodopa (L-DOPA) is widely used for symptomatic management in Parkinson's disease. We recently showed that (−)-epigallocatechin-3-gallate, a tea polyphenol, not only inhibits L-DOPA methylation, but also protects against oxidative hippocampal neurodegeneration. In the present study, we sought to determine several other common dietary phenolics, namely, tea catechins [(+)-catechin and (−)-epicatechin] and a representative flavonoid (quercetin), for their ability to modulate L-DOPA methylation and to protect against oxidative hippocampal injury. A combination of in vitro biochemical assays, cell culture-based mechanistic analyses, and in vivo animal models was used. While both tea catechins and quercetin strongly inhibit human liver catechol-O-methyltransferase (COMT)-mediated O-methylation of L-DOPA in vitro, only (+)-catechin exerts a significant inhibition of L-DOPA methylation in both peripheral compartment and striatum in rats. The stronger in vivo effect of (+)-catechin on L-DOPA methylation compared to the other dietary compounds is due to its better bioavailability in vivo. In addition, (+)-catechin strongly reduces glutamate-induced oxidative cytotoxicity in HT22 mouse hippocampal neurons in vitro through inactivation of the nuclear factor-κB signaling pathway. Administration of (+)-catechin also exerts a strong neuroprotective effect in the kainic acid-induced oxidative hippocampal neurodegeneration model in rats. In conclusion, (+)-catechin is a dietary polyphenolic that may have beneficial effects in L-DOPA-based treatment of Parkinson patients by inhibiting L-DOPA methylation plus reducing oxidative neurodegeneration.
► (+)-Catechin strongly inhibits L-DOPA methylation metabolism in vitro and in vivo.
► (+)-Catechin also exerts a strong neuroprotective effect against oxidative damage in vitro and in vivo.
► (+)-Catechin may be used as an adjuvant in the treatment of human Parkinson disease.
Journal: Brain Research - Volume 1497, 25 February 2013, Pages 1–14