کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
432573 | 688957 | 2006 | 9 صفحه PDF | دانلود رایگان |

In this paper, we address the problem of searching huge biological databases on the scale of at least several gigabytes by utilizing parallel processing. Biological databases storing DNA sequences, protein sequences, or mass spectra are growing exponentially. Searches through these databases consume exponentially growing computational resources as well. We demonstrate herein a general use, MPI based, C++ framework for generically splitting databases amongst several computational nodes. The combined RAM of the nodes working in tandem is often sufficient to keep the entire database in memory, and therefore to search it efficiently without paging to disk. The framework runs as a persistent service, processing all submitted queries. This allows for query reordering and better utilization of the memory. Thereby, we achieve superlinear speedups compared to single processor implementations. We demonstrate the utility and speedup of the framework using a real biological database and an actual searching algorithm for mass spectrometry.
Journal: Journal of Parallel and Distributed Computing - Volume 66, Issue 12, December 2006, Pages 1503-1511