کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
432907 689114 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parallel block tridiagonalization of real symmetric matrices
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Parallel block tridiagonalization of real symmetric matrices
چکیده انگلیسی

Two parallel block tridiagonalization algorithms and implementations for dense real symmetric matrices are presented. Block tridiagonalization is a critical pre-processing step for the block tridiagonal divide-and-conquer algorithm for computing eigensystems and is useful for many algorithms desiring the efficiencies of block structure in matrices. For an “effectively” sparse matrix, which frequently results from applications with strong locality properties, a heuristic parallel algorithm is used to transform it into a block tridiagonal matrix such that the eigenvalue errors remain bounded by some prescribed accuracy tolerance. For a dense matrix without any usable structure, orthogonal transformations are used to reduce it to block tridiagonal form using mostly level 3 BLAS operations. Numerical experiments show that block tridiagonal structure obtained from this algorithm directly affects the computational complexity of the parallel block tridiagonal divide-and-conquer eigensolver. Reduction to block tridiagonal form provides significantly lower execution times, as well as memory traffic and communication cost, over the traditional reduction to tridiagonal form for eigensystem computations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Parallel and Distributed Computing - Volume 68, Issue 5, May 2008, Pages 703-715