کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
433041 | 689217 | 2013 | 11 صفحه PDF | دانلود رایگان |

Tiled multi-core architectures have become an important kind of multi-core design for its good scalability and low power consumption. Stream programming has been productively applied to a number of important application domains. It provides an attractive way to exploit the parallelism. However, the architecture characteristics of large amounts of cores, memory hierarchy and exposed communication between tiles have presented a performance challenge for stream programs running on tiled multi-cores. In this paper, we present StreamTMC, an efficient stream compilation framework that optimizes the execution of stream applications for the tiled multi-core. This framework is composed of three optimization phases. First, a software pipelining schedule is constructed to exploit the parallelism. Second, an efficient hybrid of SPM and cache buffer allocation algorithm and data copy elimination mechanism is proposed to improve the efficiency of the data access. Last, a communication aware mapping is proposed to reduce the network communication and synchronization overhead. We implement the StreamTMC compiler on Godson-T, a 64-core tiled architecture and conduct an experimental study to verify the effectiveness. The experimental results indicate that StreamTMC can achieve an average of 58% improvement over the performance before optimization.
► Framework for compilation of stream programs to tiled multi-core architecture.
► Hybrid of SPM and cache buffer allocation and data copy elimination mechanism.
► Communication hiding decoupled with communication aware mapping.
► A stream compiler is implemented for Godson-T to verify the effectiveness.
Journal: Journal of Parallel and Distributed Computing - Volume 73, Issue 4, April 2013, Pages 484–494