کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4339386 1295752 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Activity-dependent remodeling of chondroitin sulfate proteoglycans extracellular matrix in the hypothalamo-neurohypophysial system
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Activity-dependent remodeling of chondroitin sulfate proteoglycans extracellular matrix in the hypothalamo-neurohypophysial system
چکیده انگلیسی
The hypothalamo-neurohypophysial system (HNS) consisting of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurons shows the structural plasticity including the rearrangement of synapses, dendrites, and neurovascular contacts during chronic physiological stimulation. In this study, we examined the remodeling of chondroitin sulfate proteoglycans (CSPGs), main extracellular matrix (ECM), in the HNS after salt loading known as a chronic stimulation to cause the structural plasticity. In the supraoptic nucleus (SON), confocal microscopic observation revealed that the immunoreactivity of 6B4 proteoglycans (PG) was observed mainly at AVP-positive magnocellular neurons but that of neurocan was seen chiefly at OXT-positive magnocellular neurons. The immunoreactivity of phosphacan and aggrecan was seen at both AVP- and OXT-positive magnocellular neurons. Electron microscopic observation further showed that the immunoreactivity of phosphacan and neurocan was observed at astrocytic processes to surround somata, dendrites, and terminals, but not synaptic junctions. In the neurohypophysis (NH), the immunoreactivity of phosphacan, 6B4 PGs, and neurocan was observed at AVP-positive magnocellular terminals, but the reactivity of Wisteria floribunda agglutinin lectin was seen at OXT-positive ones. The immunoreactivity of versican was found at microvessel and that of aggrecan was not detected in the NH. Quantitative morphometrical analysis showed that the chronic physiological stimulation by 7-day salt loading decreased the level of 6B4 PGs in the SON and the level of phosphacan, 6B4 PGs, and neurocan in the NH. These results suggest that the extracellular microenvironment of CSPGs is different between AVP and OXT magnocellular neurons and activity-dependent remodeling of CSPGs could be involved in the structural plasticity of the HNS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 166, Issue 4, 14 April 2010, Pages 1068-1082
نویسندگان
, , ,