کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4410022 | 1307523 | 2012 | 8 صفحه PDF | دانلود رایگان |

The high P retention of acidic Andisols makes necessary to increase our technological approaches in pasture management in the animal system production. Here, we evaluated the clay- or nanoclay-acid phosphatase complexes for improving phosphorus mineralization from degraded cattle dung. We implemented an immobilization mechanism of acid phosphatase (AP) using natural clays (allophanic and montmorillonite) and nanoclays as support materials. Also, we evaluated the mineralization of organic P containing in decomposed cattle dung with clay- and nanoclay-AP complexes by incubation studies. Clays and nanoclays were characterized by microscopy techniques as atomic force and confocal-laser scanning microscopy. We found that these support materials stabilized AP by encapsulation. Our results showed that immobilization on allophanic or montmorillonite materials improved both the specific activity (4–48%) and the Vmax (28–38%) of AP. Moreover, the enzyme had a better performance when immobilized on clay and nanoclay from Andisol than on montmorillonite materials. Phosphorous mineralization of cattle dung was regulated by water-soluble P present in the dung and P re-adsorption on allophanic materials. However, we were able to detect a potential capacity of AP immobilized on allophanic nanoclays as the best alternative for P mineralization. Further research with initially low water-soluble P containing organic materials is required to quantify the P mineralization potential and bioavailability of P from dung.
► Acid phosphatase (AP) encapsulation improved their specific activity.
► Natural allophanic nanoclay was the best support for AP biocatalytical application.
► Organic-P hydrolysis increased in dung by AP encapsulated on allophanic nanoclay.
► AP-allophanic nanoclay constitute a potential alternative for agricultural use.
Journal: Chemosphere - Volume 89, Issue 6, October 2012, Pages 648–655