کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4411279 1307587 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses
چکیده انگلیسی

Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24 h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg−1. Sorption and desorption studies were conducted on the <2.0 mm material and three size fractions within the <2.0 mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ⩾2 h). The effect of DOC was minimal at <150 mg DOC L−1, but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L−1. The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0 mm) are ∼44 g kg−1 and >75 g kg−1, respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg-l, but increased (<9% of the P sorbed) at cumulative P loads >70 g kg−1. The <2.0 mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.

Research highlights
► Two aluminum water treatment residuals assessed as permeable reactive barriers to reduce P loss.
► Determined P sorption kinetics, long-term P sorption capacity, and the stability of sorbed-P.
► Observed rapid P sorption kinetics and high sorption capacity for both residuals.
► Residuals can likely irreversibly bind P for decades at expected field conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 83, Issue 7, May 2011, Pages 978–983
نویسندگان
, , , , ,