کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4429095 1619809 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland
چکیده انگلیسی

Few studies have conducted the responses of soil extracellular enzyme activities (EEA) to climate change, especially over the long term. In this study, we investigated the six-year responses of soil EEA to warming and increased precipitation in a temperate grassland of northern China at two depths of 0–10 and 10–20 cm. These extracellular enzymes included carbon-acquisition enzymes (β-glucosidase, BG), nitrogen-acquisition enzymes (N-acetylglucosaminidase, NAG; Leucine aminopeptidase, LAP) and phosphorus-acquisition enzymes (acid and alkaline phosphatases). The results showed that warming significantly increased acid phosphatase at the 0–10 cm depth and NAG at the 10–20 cm depth, but dramatically decreased BG and acid phosphatase in the subsurface. In contrast, increased precipitation significantly increased NAG, LAP and alkaline phosphatase in the surface and NAG, LAP and acid phosphatase in the subsurface. There was a significant warming and increased precipitation interaction on BG in the subsurface. Redundancy analysis indicated that the patterns of EEA were mainly driven by soil pH and NH4+–N and NO3−–N in the surface, while by NH4+–N and microbial biomass in the subsurface. Our results suggested that soil EEA responded differentially to warming and increased precipitation at two depths in this region, which may have implications for carbon and nutrient cycling under climate change.


► We conducted soil EEA from a six-year warming and increased precipitation experiment in a semiarid grassland.
► Warming increased acid phosphatase at the 0–10 cm depth and NAG at the 10–20 cm depth.
► Warming decreased BG and acid phosphatase in the subsurface.
► Increased precipitation increased NAG, LAP and phosphatase at both depths.
► The patterns of EEA were differentially driven by soil biochemical properties at either depth.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 444, 1 February 2013, Pages 552–558
نویسندگان
, , , , , , ,