کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4441734 1311120 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neuro-fuzzy and neural network systems for air quality control
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Neuro-fuzzy and neural network systems for air quality control
چکیده انگلیسی

In order to define efficient air quality plans, Regional Authorities need suitable tools to evaluate both the impact of emission reduction strategies on pollution indexes and the costs of such emission reductions. The air quality control can be formalized as a two-objective nonlinear mathematical problem, integrating source–receptor models and the estimate of emission reduction costs. Both aspects present several complex elements. In particular the source–receptor models cannot be implemented through deterministic modelling systems, that would bring to a computationally unfeasible mathematical problem. In this paper we suggest to identify source–receptor statistical models (neural network and neuro-fuzzy) processing the simulations of a deterministic multi-phase modelling system (GAMES). The methodology has been applied to ozone and PM10 concentrations in Northern Italy. The results show that, despite a large advantage in terms of computational costs, the selected source–receptor models are able to accurately reproduce the simulation of the 3D modelling system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 43, Issue 31, October 2009, Pages 4811–4821
نویسندگان
, , , ,