کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4453671 1620810 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes
ترجمه فارسی عنوان
جذب کلروفنل ها از محلول های آبی با نانولوله های کربنی تک محوره
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست علوم زیست محیطی (عمومی)
چکیده انگلیسی

The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi–Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between logKow and logKd suggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π–π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84 mg/g, from 19 to 65 mg/g and from 17 to 65 mg/g, respectively. The effect of pH on the adsorption of 2,6-dichlorophenol (2,6-DCP), was also studied. When pH is over the pKa of 2,6-dichlorophenol (2,6-DCP), its removal dropped sharply. When ionic strength increased (NaCl or KCl concentration from 0 to 0.02 mmol/L), the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Sciences - Volume 43, May 2016, Pages 187–198
نویسندگان
, , , , ,