کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4458803 1621232 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid glacier Inventory, Gravimetry and Altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Hybrid glacier Inventory, Gravimetry and Altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic
چکیده انگلیسی


• Present a glacier mass balance field that is consistent with altimetry & gravimetry observations
• Evaluate new product against all available in situ observations of glacier mass balance
• Present new, and survey old, basin scale ice loss estimates for Canadian Arctic and Greenland
• Present unique spatial partition of surface and ice dynamic portions of mass balance

We present a novel inversion algorithm that generates a mass balance field that is simultaneously consistent with independent observations of glacier inventory derived from optical imagery, cryosphere-attributed mass trends derived from satellite gravimetry, and ice surface elevation trends derived from airborne and satellite altimetry. We use this algorithm to assess mass balance across Greenland and the Canadian Arctic over the Sep-2003 to Oct-2009 period at 26 km resolution. We evaluate local algorithm-inferred mass balance against forty in situ point observations. This evaluation yields an RMSE of 0.15 mWE/a, and highlights a paucity of in situ observations from regions of high dynamic mass loss and peripheral glaciers. We assess mass losses of 212 ± 67 Gt/a to the Greenland ice sheet proper, 38 ± 11 Gt/a to peripheral glaciers in Greenland, and 42 ± 11 Gt/a to glaciers in the Canadian Arctic. These magnitudes of mass loss are dependent on the gravimetry-derived spherical harmonic mass trend we invert. We spatially partition the transient glacier continuity equation by differencing algorithm-inferred mass balance from modeled surface mass balance, in order to solve the horizontal divergence of ice flux as a residual. This residual ice dynamic field infers flux divergence (or submergent flow) in the ice sheet accumulation area and at tidewater margins, and flux convergence (or emergent flow) in land-terminating ablation areas, which is consistent with continuum mechanics theory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 168, October 2015, Pages 24–39
نویسندگان
, , , , , , , , ,