کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4460612 1621329 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica
چکیده انگلیسی

Conservation and land use planning in humid tropical lowland forests urgently need accurate remote sensing techniques to distinguish among floristically different forest types. We investigated the degree to which floristically and structurally defined Costa Rican lowland rain forest types can be accurately discriminated by a non-parametric k nearest neighbors (k-nn) classifier or linear discriminant analysis. Pixel values of Landsat Thematic Mapper (TM) image and Shuttle Radar Topography Mission (SRTM) elevation model extracted from segments or from 5 × 5 pixel windows were employed in the classifications. 104 field plots were classified into three floristic and one structural type of forest (regrowth forest). Three floristically defined forest types were formed through clustering the old-growth forest plots (n = 52) by their species specific importance values. An error assessment of the image classification was conducted via cross-validation and error matrices, and overall percent accuracy and Kappa scores were used as measures of accuracy. Image classification of the four forest types did not adequately distinguish two old-growth forest classes, so they were merged into a single forest class. The resulting three forest classes were most accurately classified by the k-nn classifier using segmented image data (overall accuracy 91%). The second best method, with respect to accuracy, was the k-nn with 5 × 5 pixel windows data (89% accuracy), followed by the canonical discriminant analysis using the 5 × 5 pixel window data (86%) and the segment data (82%). We conclude the k-nn classifier can accurately distinguish floristically and structurally different rain forest types. The classification accuracies were higher for the k-nn classifier than for the canonical discriminant analysis, but the differences in Kappa scores were not statistically significant. The segmentation did not increase classification accuracy in this study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 112, Issue 5, 15 May 2008, Pages 2485–2494
نویسندگان
, , , , , ,