کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4461016 1621366 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa
چکیده انگلیسی

We developed a new 6-year daily, daytime and nighttime, NOAA-14 AVHRR based land surface temperature (LST) dataset over continental Africa for the period 1995 through 2000. The processing chain was developed within the Global Inventory Modeling and Mapping System (GIMMS) at NASA's Goddard Space Flight Center. This paper describes the processing methodology used to convert the Global Area Coverage Level-1b data into LST and collateral data layers, such as sun and view geometries, cloud mask, local time of observation, and latitude and longitude. We used the Ulivieri et al. [Ulivieri, C., M.M. Castronuovo, R. Francioni, and A. Cardillo (1994), A split window algorithm for estimating land surface temperature from satellites, Adv. Space Research, 14(3):59–65.] split window algorithm to determine LST values. This algorithm requires as input values of surface emissivity in AVHRR channels 4 and 5. Thus, we developed continental maps of emissivity using an ensemble approach that combines laboratory emissivity spectra, MODIS-derived maps of herbaceous and woody fractional cover, and the UNESCO FAO soil map. A preliminary evaluation of the resulting LST product over a savanna woodland in South Africa showed a bias of < 0.3 K and an uncertainty of < 1.3 K for daytime retrievals (< 2.5 K for night). More extensive validation is required before statistically significant uncertainties can be determined. The LST production chain described here could be adapted for any wide field of view sensor (e.g., MODIS, VIIRS), and the LST product may be suitable for monitoring spatial and temporal temperature trends, or as input to many process models (e.g., hydrological, ecosystem).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 103, Issue 2, 30 July 2006, Pages 153–164
نویسندگان
, , , ,