کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4500771 | 1320021 | 2008 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Method for inferring and extracting reliable genetic interactions from time-series profile of gene expression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recent advances in technologies such as DNA microarrays have provided an abundance of gene expression data on the genomic scale. One of the most important projects in the post-genome-era is the systemic identification of gene expression networks. However, inferring internal gene expression structure from experimentally observed time-series data are an inverse problem. We have therefore developed a system for inferring network candidates based on experimental observations. Moreover, we have proposed an analytical method for extracting common core binomial genetic interactions from various network candidates. Common core binomial genetic interactions are reliable interactions with a higher possibility of existence, and are important for understanding the dynamic behavior of gene expression networks. Here, we discuss an efficient method for inferring genetic interactions that combines a Step-by-step strategy (Y. Maki, Y. Takahashi, Y. Arikawa, S. Watanabe, K. Aoshima, Y. Eguchi, T. Ueda, S. Aburatani, S. Kuhara, M. Okamoto, An integrated comprehensive workbench for inferring genetic networks: Voyagene, Journal of Bioinformatics and Computational Biology 2(3) (2004) 533.) with an analysis method for extracting common core binomial genetic interactions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 215, Issue 1, September 2008, Pages 105-114
Journal: Mathematical Biosciences - Volume 215, Issue 1, September 2008, Pages 105-114
نویسندگان
Masahiko Nakatsui, Takanori Ueda, Yukihiro Maki, Isao Ono, Masahiro Okamoto,