کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4500780 | 1320022 | 2009 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Protein secondary structure prediction using three neural networks and a segmental semi Markov model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To overcome the weakness of SSMMs in prediction, in this work we consider a SSMM as a decision function on outputs of three NNs that uses multiple sequence alignment profiles. We consider four types of observations for outputs of a neural network. Then profile table related to each sequence is reduced to a sequence of four observations. In order to predict secondary structure of each amino acid we need to consider a decision function. We use an SSMM on outputs of three neural networks. The proposed SSMM has discriminative power and weights over different dependency models for outputs of neural networks. The results show that the accuracy of our model in predictions, particularly for strands, is considerably increased.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 217, Issue 2, February 2009, Pages 145-150
Journal: Mathematical Biosciences - Volume 217, Issue 2, February 2009, Pages 145-150
نویسندگان
Seyed Amir Malekpour, Sima Naghizadeh, Hamid Pezeshk, Mehdi Sadeghi, Changiz Eslahchi,