کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4501038 1624040 2006 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Periodic difference equations, population biology and the Cushing–Henson conjectures
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Periodic difference equations, population biology and the Cushing–Henson conjectures
چکیده انگلیسی

We show that for a k-periodic difference equation, if a periodic orbit of period r is globally asymptotically stable (GAS), then r must be a divisor of k. Moreover, if r divides k we construct a non-autonomous dynamical system having minimum period k and which has a GAS periodic orbit with minimum period r. Our method uses the technique of skew-product dynamical systems. Our methods are then applied to prove two conjectures of Cushing and Henson concerning a non-autonomous Beverton–Holt equation which arises in the study of the response of a population to a periodically fluctuating environmental force such as seasonal fluctuations in carrying capacity or demographic parameters like birth or death rates. We give an equality linking the average population with the growth rates and carrying capacities (in the 2-periodic case) which shows that out-of-phase oscillations in these quantities always have a deleterious effect on the average population. We give an example where in-phase oscillations cause the opposite to occur.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 201, Issues 1–2, May 2006, Pages 195–207
نویسندگان
, ,