کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4502444 | 1624164 | 2013 | 7 صفحه PDF | دانلود رایگان |

Taylor’s law (TL), a widely verified empirical relationship in ecology, states that the variance of population density is approximately a power-law function of mean density. The growth-rate theorem (GR) states that, in a subdivided population, the rate of change of the overall growth rate is proportional to the variance of the subpopulations’ growth rates. We show that continuous-time exponential change implies GR at every time and, asymptotically for large time, TL with power-law exponent 2. We also show why diverse population-dynamic models predict TL in the limit of large time by identifying simple features these models share: If the mean population density and the variance of population density are (exactly or asymptotically) non-constant exponential functions of a parameter (e.g., time), then the variance of density is (exactly or asymptotically) a power-law function of mean density.
Journal: Theoretical Population Biology - Volume 88, September 2013, Pages 94–100