کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4502937 1624172 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameterizing the growth-decline boundary for uncertain population projection models
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Parameterizing the growth-decline boundary for uncertain population projection models
چکیده انگلیسی

We consider discrete time linear population models of the form n(t+1)=An(t) where A is a population projection matrix or integral projection operator, and n(t) represents a structured population at time tt. It is well known that the asymptotic growth or decay rate of n(t) is determined by the leading eigenvalue of A.In practice, population models have substantial parameter uncertainty, and it might be difficult to quantify the effect of this uncertainty on the leading eigenvalue. For a large class of matrices and integral operators A, we give sufficient conditions for an eigenvalue to be the leading eigenvalue.By preselecting the leading eigenvalue to be equal to 1, this allows us to easily identify, which combination of parameters, within the confines of their uncertainty, lead to asymptotic growth, and which lead to asymptotic decay. We then apply these results to the analysis of uncertainty in both a matrix model and an integral model for a population of thistles. We show these results can be generalized to any preselected leading eigenvalue.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Population Biology - Volume 75, Issues 2–3, March–May 2009, Pages 85–97
نویسندگان
, , , , ,