کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4502940 | 1624172 | 2009 | 10 صفحه PDF | دانلود رایگان |

Recently, a computationally-efficient method was presented for calibrating a wide-class of Markov processes from discrete-sampled abundance data. The method was illustrated with respect to one-dimensional processes and required the assumption of stationarity. Here we demonstrate that the approach may be directly extended to multi-dimensional processes, and two analogous computationally-efficient methods for non-stationary processes are developed. These methods are illustrated with respect to disease and population models, including application to infectious count data from an outbreak of “Russian influenza” (A/USSR/1977 H1N1) in an educational institution. The methodology is also shown to provide an efficient, simple and yet rigorous approach to calibrating disease processes with gamma-distributed infectious period.
Journal: Theoretical Population Biology - Volume 75, Issues 2–3, March–May 2009, Pages 123–132