کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
451337 | 694283 | 2010 | 14 صفحه PDF | دانلود رایگان |

We consider massively dense ad hoc networks and study their continuum limits as the node density increases and as the graph providing the available routes becomes a continuous area with location and congestion dependent costs. We study both the global optimal solution as well as the non-cooperative routing problem among a large population of users where each user seeks a path from its origin to its destination so as to minimize its individual cost. Finally, we seek for a (continuum version of the) Wardrop equilibrium. We first show how to derive meaningful cost models as a function of the scaling properties of the capacity of the network and of the density of nodes. We present various solution methodologies for the problem: (1) the viscosity solution of the Hamilton–Jacobi–Bellman equation, for the global optimization problem, (2) a method based on Green’s Theorem for the least cost problem of an individual, and (3) a solution of the Wardrop equilibrium problem using a transformation into an equivalent global optimization problem.
Journal: Computer Networks - Volume 54, Issue 6, 29 April 2010, Pages 1005–1018