کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4516297 | 1624903 | 2009 | 6 صفحه PDF | دانلود رایگان |

More than one-third of the world's population is afflicted by iron (Fe) and zinc (Zn) deficiencies, since cereal grain as a staple food of the people contains low levels or low bioavailability of Fe and Zn because of phytate. In maize, 80% of grain phosphorus (P) is in the form of phytate, and P could be an indicator of phytate content. The objectives of this study were (1) to estimate genetic variation of Fe and Zn in a maize population including P/Fe and P/Zn molar ratios as quantitative traits; (2) to determine relations among yield, P, Fe, Zn, P/Fe and P/Zn molar ratios; and (3) to define the implications of those on biofortification (breeding) programmes. There were significant genetic variations and workable heritabilities for Fe, Zn, P/Fe and P/Zn estimated in 294 F4 lines of a maize population, but there were no associations among six traits according to both simple correlations and principal component analysis. Weak correlations between P and Fe and between P and Zn indicated feasibility of breeding non low-phytic acid maize genotypes with more appropriate phytate/Fe and phytate/Zn relations. Bioavailability of iron and zinc varied substantially in a maize population justifying utilisation of these unique parameters in biofortification programmes.
Journal: Journal of Cereal Science - Volume 50, Issue 3, November 2009, Pages 392–397