کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4525450 1625634 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A heterogeneity model comparison of highly resolved statistically anisotropic aquifers
ترجمه فارسی عنوان
مقایسه مدل ناهمگنی ماهیان بسیار رقیق و آسیب دیده
کلمات کلیدی
ناهمگون، آمار زمین شناسی کیفیت بالا، عدم قطعیت، لحظه فضایی، منحنی دستیابی به موفقیت
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• High resolution Gaussian and non-Gaussian fields differ in transport behavior.
• The heterogeneity model is important for some metrics at some anisotropy ratios.
• Characterization of the K distribution tails may be important in modeling efforts.

Aquifer heterogeneity is known to affect solute characteristics such as spatial spreading, mixing, and residence time, and is often modeled geostatistically to address aquifer uncertainties. While parameter uncertainty is often considered, the model uncertainty of the heterogeneity structure is frequently ignored. In this high-resolution heterogeneity model comparison, we perform a stochastic analysis utilizing spatial moment and breakthrough curve (BTC) metrics on Gaussian (G), truncated Gaussian (TG), and non-Gaussian, or “facies” (F) heterogeneous domains. Three-dimensional plume behavior is rigorously assessed with meter (horizontal) and cm (vertical) scale discretization over a ten-kilometer aquifer. Model differences are quantified as a function of statistical anisotropy, ε, by varying the x-direction integral scale of hydraulic conductivity, K, from 15 to 960 (m). We demonstrate that the model is important only for certain metrics within a range of ε. For example, spreading is insensitive to the model selection at low ε, but not at high ε. In contrast, center of mass is sensitive to the model selection at low ε, and not at high ε. A conceptual model to explain these trends is proposed and validated with BTC metrics. Simulations show that G model effective K, and 1st and 2nd spatial moments are much greater than that of TG and F models. A comparison of G and TG models (which only differ in K-distribution tails) reveal drastically different behavior, exemplifying how accurate characterization of the K-distribution may be important in modeling efforts, especially in aquifers where extreme K values are often not measured, or inadvertently overlooked.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 75, January 2015, Pages 53–66
نویسندگان
, ,