کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4525778 | 1625655 | 2013 | 11 صفحه PDF | دانلود رایگان |

This study has applied evolutionary algorithm to address the data assimilation problem in a distributed hydrological model. The evolutionary data assimilation (EDA) method uses multi-objective evolutionary strategy to continuously evolve ensemble of model states and parameter sets where it adaptively determines the model error and the penalty function for different assimilation time steps. The assimilation was determined by applying the penalty function to merge background information (i.e., model forecast) with perturbed observation data. The assimilation was based on updated estimates of the model state and its parameterizations, and was complemented by a continuous evolution of competitive solutions.The EDA was illustrated in an integrated assimilation approach to estimate model state using soil moisture, which in turn was incorporated into the soil and water assessment tool (SWAT) to assimilate streamflow. Soil moisture was independently assimilated to allow estimation of its model error, where the estimated model state was integrated into SWAT to determine background streamflow information before they are merged with perturbed observation data. Application of the EDA in Spencer Creek watershed in southern Ontario, Canada generates a time series of soil moisture and streamflow. Evaluation of soil moisture and streamflow assimilation results demonstrates the capability of the EDA to simultaneously estimate model state and parameterizations for real-time forecasting operations. The results show improvement in both streamflow and soil moisture estimates when compared to open-loop simulation, and a close matching between the background and the assimilation illustrates the forecasting performance of the EDA approach.
► This study develops and demonstrates evolutionary strategy for data assimilation in a distributed hydrologic model.
► The evolutionary data assimilation was applied to simultaneously assimilate soil moisture and streamflow.
► The method has been shown to be a suitable data assimilation technique and to facilitate the design of forecasting systems.
Journal: Advances in Water Resources - Volume 53, March 2013, Pages 231–241