کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4526525 | 1323843 | 2008 | 18 صفحه PDF | دانلود رایگان |

Diffusion in stratified porous media is common in the natural environment. The objective of this study is to develop analytical solutions for describing the diffusion in layered porous media with a position-dependent diffusion coefficient within each layer. The orthogonal expansion technique was used to solve a one-dimensional multi-layer diffusion equation in which the diffusion coefficient is expressed as a segmented linear function of positions in the porous media. The behavior of the solutions is illustrated using several examples of a three-layer system, with constant diffusion coefficient α1 in layer 1 (0 < x < l1), α3 in layer 3(l2 < x < l3), and a linearly position-dependent diffusion coefficient α1(1 + Δ(x − l1)/(l2 − l1)) in the center layer (Δ = α3/α1 − 1). Because of the asymmetry of the layered system, the diffusion and related concentration distributions are also asymmetrical. For a given Δ value, the smaller the value of (l2 − l1)/l3, the more significant the accumulation of concentration in the middle transition zone (l1 < x < l2), the sharper the change in the concentration profile of spatial distribution. Therefore, transition between two layers has significant effects on diffusion.
Journal: Advances in Water Resources - Volume 31, Issue 2, February 2008, Pages 251–268