کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4548897 1627339 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات اقیانوس شناسی
پیش نمایش صفحه اول مقاله
Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model
چکیده انگلیسی

Quantifying parameter and prediction uncertainty in a rigorous framework can be an important component of model skill assessment. Generally, models with lower uncertainty will be more useful for prediction and inference than models with higher uncertainty. Ensemble estimation, an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty. It is based on the idea that simultaneously estimating common or similar parameters among models can result in more precise estimates. We demonstrate this approach using the Streeter–Phelps dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay. Chesapeake Bay has a long history of bottom water hypoxia and several models are being used to assist management decision-making in this system. The Bayesian framework is particularly useful in a decision context because it can combine both expert-judgment and rigorous parameter estimation to yield model forecasts and a probabilistic estimate of the forecast uncertainty.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Marine Systems - Volume 76, Issues 1–2, 20 February 2009, Pages 244–250
نویسندگان
, ,