کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593190 1630645 2016 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fields generated by torsion points of elliptic curves
ترجمه فارسی عنوان
زمینه های تولید شده توسط نقاط پیچشی منحنی های بیضوی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Let K   be a field of characteristic char(K)≠2,3char(K)≠2,3 and let EE be an elliptic curve defined over K. Let m   be a positive integer, prime with char(K)char(K) if char(K)≠0char(K)≠0; we denote by E[m]E[m] the m  -torsion subgroup of EE and by Km:=K(E[m])Km:=K(E[m]) the field obtained by adding to K   the coordinates of the points of E[m]E[m]. Let Pi:=(xi,yi)Pi:=(xi,yi) (i=1,2i=1,2) be a ZZ-basis for E[m]E[m]; then Km=K(x1,y1,x2,y2)Km=K(x1,y1,x2,y2). We look for small sets of generators for KmKm inside {x1,y1,x2,y2,ζm}{x1,y1,x2,y2,ζm} trying to emphasize the role of ζmζm (a primitive m  -th root of unity). In particular, we prove that Km=K(x1,ζm,y2)Km=K(x1,ζm,y2), for any odd m⩾5m⩾5. When m=pm=p is prime and K   is a number field we prove that the generating set {x1,ζp,y2}{x1,ζp,y2} is often minimal, while when the classical Galois representation Gal(Kp/K)→GL2(Z/pZ)Gal(Kp/K)→GL2(Z/pZ) is not surjective we are sometimes able to further reduce the set of generators. We also describe explicit generators, degree and Galois groups of the extensions Km/KKm/K for m=3m=3 and m=4m=4.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 169, December 2016, Pages 103–133
نویسندگان
, ,