کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593332 1630651 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Euler totient sum inequality
ترجمه فارسی عنوان
حسابی اویلر به نابرابری
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی


• Define χ(1)=1χ(1)=1, χ(n)=ϕ(n)+χ(n/q)χ(n)=ϕ(n)+χ(n/q) (n>1n>1), where q is the least prime factor of n.
• When n=dℓn=dℓ and the prime factors of d exceed those of ℓ  , χ(n)=ϕ(d)(χ(ℓ)−1)+χ(d)χ(n)=ϕ(d)(χ(ℓ)−1)+χ(d).
• When (m,n)=1(m,n)=1, χ(mn)≤χ(m)χ(n)χ(mn)≤χ(m)χ(n), with equality if and only if one of m or n is 1.
• GL(2,p)GL(2,p) (p>11p>11) has clique number greater than that of its largest cyclic subgroup.

TextDefine χ(n)χ(n) recursively by χ(1)=1χ(1)=1 and χ(n)=ϕ(n)+χ(n/q)χ(n)=ϕ(n)+χ(n/q) for all integers n>1n>1, where q is the least prime factor of n, and where ϕ   is the Euler totient function. We show that χ(n)=ϕ(d)(χ(ℓ)−1)+χ(d)χ(n)=ϕ(d)(χ(ℓ)−1)+χ(d), where n=dℓn=dℓ and the prime factors of d are greater than the prime factors of ℓ  . We also show χ(nm)≤χ(n)χ(m)χ(nm)≤χ(n)χ(m) when n and m   are coprime numbers. As an application, we show that for all primes p≥11p≥11, χ(p2−p)>χ(p2−1)χ(p2−p)>χ(p2−1). We discuss the interpretation of χ as the clique number of the power graph of a finite cyclic group and the significance of the inequality in this context.VideoFor a video summary of this paper, please visit https://youtu.be/p8finzAEJps.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 163, June 2016, Pages 101–113
نویسندگان
, ,